
TL Note – Testing Basics
Testing is just one element of Quality Assurance. Testing is so much more than just coding something

then seeing if it works, or whether the client or potential users like it. Comprehensive and various

testing is important to projects, regardless of what process (e.g., Waterfall, Agile, etc) is being

followed. Following is a brief description of testing activities to help with understanding testing

appropriate for the TechLauncher Program.

Testing Activities

Testing activities always form part of your overall development process, but there is variation on how

the testing related activities map into the chosen process. For example, for a Waterfall process all

testing is carried out after implementation. For agile, testing is carried out in every iteration. The

activities include:

Test Strategy
Development

A test strategy should be defined covering types, including unit testing, system
testing, integration testing, and user acceptance testing as appropriate. When
devising a test strategy, keep in mind that you need to ensure that things not only
work correctly, but also that invalid or unexpected things are also handled correctly.
For example, what happens if an input is out of bounds, and are totally random
events handled (e.g., as if there was a monkey on the keyboard)?
For user acceptance testing, consider how the testers will be identified and
whether there are any ethical issues to be resolved. In the absence of access to real
potential users, think about whether pseudo users could be used and any
associated limitations.

Test Planning Much of the testing should be done by validating the outcome against predefined
tests and expected results. Hence tests should be defined against (and hence trace
from) requirements, to validate implementation. Once again, don’t forget to think
about coverage of invalid or unexpected things.
Test plans are used not only as input to test execution, but also as a basis for impact
analysis when things change.
Seeking feedback from your client or potential users without up-front expectations
may be a valid part of your testing. However, this should still be done with a
playbook against which coverage can be assured and feedback can be collected.

Executing and
documenting

Think carefully about roles and responsibilities for testing activities. Who will write
the test scripts (playbooks), deploy and maintain testing infrastructure, compile
measurements and monitor user activities. In small teams, members are likely to
have to have testing responsibilities in addition to other roles. Tests should be
carried out and results recorded and communicated as appropriate. This may be
pass/fail against individual tests, summary test reports. These documented
outcomes are important evidence that you have produced not only outputs, but
accepted and successful outputs.

Handling test
outcomes

Depending on your project processes, think about the appropriate spawning of
other processes as a result of test outcomes. A test failure or lack of acceptance
must first be analysed since it may indicate:

- Incorrect implementation

- Misunderstood or incorrectly defined requirement(s).

- The test itself is not correct or appropriate.

The consequence of the failed test should trigger appropriate project processes to
rectify the situation. For example, a defect on implementation will trigger your
development process, prioritisation of the fix, and relevant tasks.

